
(12) United States Patent
Malekpour

(54) BYZANTINE-FAULT TOLERANT
SELF-STABILIZING PROTOCOL FOR
DISTRIBUTED CLOCK SYNCHRONIZATION
SYSTEMS

(75) Inventor: Mahyar R. Malekpour, Hampton, VA
(US)

(73) Assignee: United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 7 days.

(21) Appl. No.: 12/187,458

(22) Filed:	 Aug. 7, 2008

(65)	 Prior Publication Data

US 2009/0040920 Al	 Feb. 12, 2009

Related U.S. Application Data

(60) Provisional application No. 60/954,866, filed on Aug.
9, 2007.

(51) Int. Cl.
GOIR 31108	 (2006.01)

(52) U.S. Cl 370/216; 370/242; 370/503;
714/12; 714/55

(1o) Patent No.:	 US 7,792,015 B2
(45) Date of Patent:	 Sep. 7, 2010

(58) Field of Classification Search None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,979,191 A * 12/1990 Bond et al 375/357
6,671,821 B1* 12/2003 Castro et at 714A

2002/0129296 At*	 9/2002 Kwiat et at 714/10
2009/0102534 At*	 4/2009 Schmid et at 327/292
2009/0122812 At*	 5/2009 Steiner et at 370/503

* cited by examiner

Primary Examiner Chi H. Pham
Assistant Examiner ShickHom
(74) Attorney, Agent, or Firm Robin W. Edwards

(57) ABSTRACT

A rapid Byzantine self-stabilizing clock synchronization pro-
tocol that self-stabilizes from any state, tolerates bursts of
transient failures, and deterministically converges within a
linear convergence time with respect to the self-stabilization
period. Upon self-stabilization, all good clocks proceed syn-
chronously. The Byzantine self-stabilizing clock synchroni-
zation protocol does not rely on any assumptions about the
initial state of the clocks. Furthermore, there is neither a
central clock nor an externally generated pulse system. The
protocol converges deterministically, is scalable, and self-
stabilizes in a short amount of time. The convergence time is
linear with respect to the self-stabilization period.

22 Claims, 7 Drawing Sheets

Nodet
From Ni

WilMonitor,

From N i _1
Monitori _1

From Ni+1	 Monitori+l

From Nk
Monitork"

State I I To other nodes
Machine

U.S. Patent	 Sep. 7, 2010	 Sheet 1 of 7	 US 7,792,015 B2

to	 to+D 	to+D+d

D	 d

FIG. 1

A A R A A	 AA R A
time

FIG. 2

U.S. Patent
	

Sep. 7, 2010	 Sheet 2 of 7	 US 7,792,015 B2

A	 A
message out

t
time

message in	 , ..

A A	 A

Dµ

FIG. 3

Nodet

Monitor, ^-

.

Monitori _1	 State
Monitori + l	

Machir

Monitork

FIG. 4

From N,

From Ni -1

From Ni+l

From Nk

To other nodes

U.S. Patent	 Sep. 7, 2010	 Sheet 3 of 7	 US 7,792,015 B2

R, A	 A	 A

(3E M DR
FIG. 5

	A A R A A A	 A A R A A
^-*time

RA	 AA	 AR

Restore ;	 Maintain	 Restore

PEffective

FIG. 6

Invalidate
"resync"
Message

Deceive
message

from source
node

Invalidate
"affirm"

Message

r Valid N
"resync"
Message
I...?/

Tesync" essage
Type/ "Affirm

'Valid\
"affirm"
Tessa e
^,?

Yes Yes

Validate
"resync,
Message

Validate
"affirm"

Message

U.S. Patent	 Sep. 7, 2010	 Sheet 4 of 7	 US 7,792,015 B2

Store
	 Store

"resync"
	

"affirm"
Message	 Message

Set State
Status of
Source to
"restore"

FIG. 7A

No

"Restore"

U.S. Patent	 Sep. 7, 2010
	

Sheet 5 of 7	 US 7,792,015 B2

A

Nodei	 'Maintain" ►{ B)State?	 L.!

MWAA
Timer 	 No -^►{ A

Consume
Transmit	 Valid Messages
"al~firm"	 Yes

Message	 Clear Source Node
State Status

Reset
DeltaAA	 Increment Accept
Timer	 Event Counter

TA

Valid	 Transitory
Received	 Conditions No 40

?	 Met?

N°	 Yes

A	 Reset
State Timer

Transition to	 A
"Maintain" State ^^

FIG. 7'B

B

04- No TimerA AA

/? TA \
Valid

Messages
Received

0

U.S. Patent
	

Sep. 7, 2010
	

Sheet 6 of 7
	

US 7,792,015 B2

State'
Timer
.-> PM?

'State Timer
rA Predsionl?

Transmit "affirm"
Message

Reset DeftaAA
Timer

>T
Nodes

Transition
out of

"Maintain"
State?

Yes

Transmit
"resync"
Message

F
Reset

ate Timer

Reset
DeltaAA Timer

Reset
Accept Event

Counter

Transition to	 A
"Restore" State F--*(

Consume
	 No

Valid Messages

No
Reset

Local Timer

A

FIG. X

U.S. Patent	 Sep. 7, 2010	 Sheet 7 of 7
	

US 7,792,015 B2

Any State

Coarse Synchronization

A Precisiontoo large?e .

Fine Synchronization

FI B'. 8

No

FIG. 9

US 7,792,015 B2
1

BYZANTINE-FAULT TOLERANT
SELF-STABILIZING PROTOCOL FOR

DISTRIBUTED CLOCK SYNCHRONIZATION
SYSTEMS

Pursuant to 35 U.S.C. §119, the benefit of priority from
provisional application 60/954,866, with a filing date ofAug.
9, 2007, is claimed for this non-provisional application.

ORIGIN OF THE INVENTION

The present invention was made by an employee of the
United States Government and may be manufactured and
used by or for the Government of the United States of
America for governmental purposes without the payment of
any royalties thereon or therefor.

2
There are known algorithms that address permanent faults,

where the issue of transient failures is either ignored or inad-
equately addressed. There are known efficient Byzantine
clock synchronization algorithms that are based on assump-

5 tions on initial synchrony of the nodes or existence of a
common pulse at the nodes. There are known clock synchro-
nization algorithms that are based on randomization and,
therefore, are non-deterministic. Some known clock synchro-
nization algorithms have provisions for initialization and/or

io reintegration. However, solving these special cases is insuf-
ficient to make the algorithm self-stabilizing. A self-stabiliz-
ing algorithm encompasses these special scenarios without
having to address them separately. The main challenges asso-
ciated with self-stabilization are the complexity of the design

15 and the proof of correctness of the protocol. Another diffi-
culty is achieving efficient convergence time for the proposed
self-stabilizing protocol.FIELD OF THE INVENTION

The present invention generally relates to fault tolerant
distributed computer systems, and, more particularly, relates
to systems and methods for self-stabilizing a system from an
arbitrary state in the presence of a bounded number of Byz-
antine faults.

BACKGROUND OF THE INVENTION

Synchronization and coordination algorithms are part of
distributed computer systems. Clock synchronization algo-
rithms are essential for managing the use of resources and
controlling communication in a distributed system. Also, a
fundamental criterion in the design of a robust distributed
system is to provide the capability of tolerating and poten-
tially recovering from failures that are not predictable in
advance. Overcoming such failures is most suitably
addressed by tolerating Byzantine faults. A Byzantine fault is
an arbitrary fault that occurs during the execution of an algo-
rithmby a distributed system. It encompasses those faults that
are commonly referred to as "crash failures" and "send and
omission failures." When a Byzantine failure has occurred,
the system may respond in any unpredictable way, unless it is
designed to have Byzantine fault tolerance. The object of
Byzantine fault tolerance is to be able to defend against a
Byzantine failure, in which a component of some system not
only behaves erroneously, but also fails to behave consistently
when interacting with multiple other components. Correctly
functioning components of a Byzantine fault tolerant system
will be able to reach the same group decisions regardless of
Byzantine faulty components.

There are upper bounds on the percentage of traitorous or
unreliable components, however. A Byzantine-fault model
encompasses all unexpected failures, including transient
ones, within the limitations of the maximum number of faults
at a given time. A distributed system tolerating as many as `F'
Byzantine faults requires a network size of more than 3F
nodes. Byzantine agreement cannot be achieved for fewer
than 3F+1 nodes, as at least 3F+1 nodes are necessary for
clock synchronization in the presence of F Byzantine faults.

A distributed system is defined to be self-stabilizing if,
from an arbitrary state and in the presence of a bounded
number of Byzantine faults, it is guaranteed to reach a legiti-
mate state in a finite amount of time and remain in a legitimate
state as long as the number of Byzantine faults is within a
specific bound. A legitimate state is a state in which all good
clocks in the system are synchronized within a given preci-
sionbound. Therefore, a self-stabilizing system is able to start
in a random state and recover from transient failures after the
faults dissipate.

BRIEF SUMMARY OF THE INVENTION
20

The object of the present invention is to overcome the
aforementioned drawbacks of current Byzantine-fault toler-
ant algorithms and to provide a rapid Byzantine self-stabiliz-
ing clock synchronization protocol that self-stabilizes from

25 any state, tolerates bursts of transient failures, and determin-
istically converges within a linear convergence time with
respect to the self-stabilization period. Upon self-stabiliza-
tion, all good clocks proceed synchronously.

In one embodiment of the invention, a system for self-
30 stabilizing from an arbitrary state in the presence of a

bounded number of Byzantine faults comprises a plurality of
nodes in communication with each other node, with each
node comprising a state machine, a plurality of monitors, a
local physical oscillator, and two logical time clocks driven

35 by the local physical oscillator. The quantity of monitors is
equal to one less than the quantity of nodes. Each monitor is
in communication with the state machine, each monitor is
configured to receive self-stabilization messages from a dif-
ferent corresponding node, and each monitor is configured to

4o determine a current state of the corresponding node. The state
machine is configured to describe a current state of the node
(either a maintain-state or a restore-state). The state machine
is configured to transmit self-stabilization messages to all
other nodes, the self-stabilization messages comprising either

45 a Resync message indicating that the node is attempting to
engage in resynchronization with all other nodes or anAffinn
message indicating that the node is transitioning to another
state in an attempt to synchronize or indicating that the node
is currently synchronized. The state machine transitions the

5o node from the maintain-state to the restore-state if a pre-
defined number of valid Resync messages have been
received. The state machine transitions the node from the
restore-state to the maintain-state if (1) the node is in the
restore-state, (2) a predefined number of events have occurred

55 within a same number of predefined time intervals, each event
occurring when a predefined number of valid self-stabiliza-
tion messages have been received by the monitors within one
predefined time interval, and (3) the monitors have not
received a valid Resync message during a most recent event

60 occurrence. Importantly, the system does not comprise a cen-
tral clock that is used by the nodes during self-stabilization,
and the nodes do not use an externally generated global pulse
during self-stabilization.

Each state machine maybe configured to transmit a Resync
65 message when the state machine transitions the node from the

maintain-state to the restore-state or when a Resync timeout
occurs. Each state machine may be configured to transmit an

US 7,792,015 B2
3

Affirm message when a predefined number of valid self-
stabilization messages have been received by as many of the
corresponding monitors within an Affirm timeout interval or
when an Affirm timeout interval has lapsed. The predefined
number of valid self-stabilization messages may equal one
minus a sum of all good nodes. The Affirm timeout interval
may equal a time difference between two most recent con-
secutive Affirm messages received from a good node during
steady state. The predefined number of valid Resync mes-
sages may equal one plus a sum of all faulty nodes. The
predefined number of events may equal two times a sum of all
faulty nodes. The predefined time intervals may equal a time
difference between two most recent consecutive Affirm mes-
sages received from a good node during steady state. The
monitors may be further configured to determine if the
received self-stabilization messages are valid and to store
most recently received valid messages.

The two logical time clocks may comprise a State _Timer
and a Local—Timer. The Local—Timer may be incremented
once every tick of the local physical oscillator. The
State—Timer may be incremented once every time difference
between two most recent consecutive Affirm messages
received from a good node during steady state. The
State—Timer may be reset either (1) when the state machine
transitions the node from the maintain-state to the restore-
state or (2) when the state machine transitions the node from
the restore-state to the maintain-state. The Local —Timer may
be reset either (1) when the Local _Timer reaches a predefined
maximum allowed value or (2) when the node has transi-
tioned to the Maintain state and remained in the Maintain
state for 4P e^s^o ticks of the local physical oscillator, where
4P eCLSLO is a maximum guaranteed self-stabilization preci-
sion of the system.

In addition to the system for self-stabilizing from an arbi-
trary state in the presence of a bounded number of Byzantine
faults as described above, other aspects of the present inven-
tion are directed to corresponding methods for self-stabiliz-
ing from an arbitrary state in the presence of a bounded
number of Byzantine faults.

BRIEF DESCRIPTION OF THE DRAWING(S)

Having thus described the invention in general terms, ref-
erence will now be made to the accompanying drawings,
which are not necessarily drawn to scale, and wherein:

FIG. 1 illustrates a timeline of event-response delay and
network imprecision of a self-stabilizing system, in accor-
dance with one embodiment of the invention; and

FIG. 2 illustrates a timing diagram of transmissions of a
good node of a self-stabilizing system during the steady state,
in accordance with embodiments of the invention;

FIG. 3 illustrates typical activities of N, between two A
messages in a stabilized system, in accordance with embodi-
ments of the invention;

FIG. 4 is a block diagram of the i th node, N,, of a self-
stabilizing system with its monitors and state machine, in
accordance with embodiments of the invention;

FIG. 5 illustrates message flow within a node state machine
of a self-stabilizing system, in accordance with embodiments
of the invention;

FIG. 6 illustrates a timing diagram of activities of a good
node of a self-stabilizing system during the steady state, in
accordance with embodiments of the invention;

FIGS. 7A-C is a flow diagram illustrating the self-stabili-
zation protocol, in accordance with embodiments of the
invention;

4
FIG. 8 illustrates the interplay of Coarse and Fine level

protocols in a self-stabilizing system, in accordance with
embodiments of the invention; and

FIG. 9 illustrates a four-node fully-connected graph of a
5 self-stabilizing system, in accordance with embodiments of

the invention.

DETAILED DESCRIPTION OF THE INVENTION

to
The present invention will now be described more fully

hereinafter with reference to the accompanying drawings.
This invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi-

15 ments set forth herein; rather, these embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the invention to those
skilled in the art. Like numbers refer to like elements through-
out. Further discussion of the present invention is provided in

20 Mahyar R. Malekpour, A Byzantine-Fault Tolerant Self-
Stabilizing Protocol for Distributed Clock Synchronization
Systems," NASA/TM-2006-214322, August 2006; Mahyar R.
Malekpour, "Model Checking a Byzantine-Fault-Tolerant
Self-Stabilizing Protocol for Distributed Clock Synchroniza-

25 tion Systems," NASA/TM-2007-215083, November 2007;
Mahyar R. Malekpour, A Byzantine-Fault Tolerant Self-
Stabilizing Protocol for Distributed Clock Synchronization
Systems," 8th International Symposium on Stabilization,
Safety, and Security of Distributed Systems, November 2006;

30 and Mahyar R. Malekpour, "Verification of a Byzantine-Fault
Tolerant Self-Stabilizing Protocol for Clock Synchroniza-
tion," 2008 IEEE Aerospace Conference, March 2008; each
incorporated by reference herein in their entirety.

Embedded distributed systems have become an integral
35 part of safety-critical computing applications, necessitating

system designs that incorporate fault tolerant clock synchro-
nization in order to achieve ultra-reliable assurance levels.
Many efficient clock synchronization protocols do not, how-
ever, address Byzantine failures, and most protocols that do

40 tolerate Byzantine failures do not self-stabilize. Of the Byz-
antine self-stabilizing clock synchronization algorithms that
exist in the literature, they are based on either unjustifiably
strong assumptions about initial synchrony of the nodes or on
the existence of a common pulse at the nodes. The Byzantine

45 self-stabilizing clock synchronization protocol presented
here does not rely on any assumptions about the initial state of
the clocks. Furthermore, there is neither a central clock nor an
externally generated pulse system. The proposed protocol
converges deterministically, is scalable, and self-stabilizes in

50 a short amount of time. The convergence time is linear with
respect to the self-stabilization period.

The underlying topology considered here is a network of K
nodes that communicate by exchanging messages through a
set of communication channels. The communication chan-

55 nels are assumed to connect a set of source nodes to a set of
destination nodes such that the source of a given message is
distinctly identifiable from other sources of messages. This
system of K nodes can tolerate a maximum of F Byzantine
faulty nodes, where K?3F+I . Therefore, the minimum num-

6o ber of good nodes in the system, G, is given by G=K—F and
thus G?(2F+I) nodes. Let K, represent the set of good
nodes. The nodes communicate with each other by exchang-
ing broadcast messages. Broadcast of a message to all other
nodes is realized by transmitting the message to all other

65 nodes at the same time. The source of a message is assumed
to be uniquely identifiable. The communication network does
not guarantee any order of arrival of a transmitted message at

US 7,792,015 B2
5

the receiving nodes. A consistent delivery order of a set of
messages does not necessarily reflect the temporal or causal
order of the events.

Each node is driven by an independent local physical oscil-
lator. The oscillators of good nodes have a known bounded 5

drift rate, 1>>p?0, with respect to real time. Each node has
two logical time clocks, Local _Timer and State _Timer,
which locally keep track of the passage of time as indicated by
the physical oscillator. In the context of this application, all
references to clock synchronization and self-stabilization of io
the system are with respect to the State _Timer and the Local_
Timer of the nodes. There is neither a central clock nor an
externally generated global pulse. The communication chan-
nels and the nodes can behave arbitrarily, provided that even-
tually the system adheres to the system assumptions.	 15

The latency of interdependent communications between
the nodes is expressed in terms of the minimum event-re-
sponse delay, D, and network imprecision, d. These param-
eters are described with the help of FIG. 1. In FIG. 1, a
message transmitted by node N at real time t o is expected to 20

arrive at all destination nodes N, be processed, and subse-
quent messages generated by N within the time interval of
[to +D, to+D+d] for all N EK,. Communication between inde-
pendently clocked nodes is inherently imprecise. The net-
work imprecision, d, is the maximum time difference 25

between all good receivers, N, of a message from N with
respect to real time. The imprecision is due to the drift of the
clocks withrespectto real time, jitter, discretization error, and
slight variations in the communication delay due to various
causes such as temperature effects and differences in the 30

lengths of the physical communication medium. These two
parameters are assumed to be bounded such that D?1 and
d?0 andboth have values with units ofreal time nominal tick.
For the remainder of this application, all references to time are
with respect to the nominal tick and are simply referred to as 35

clock ticks.
Protocol Description
The self-stabilization problem has two facets. First, it is

inherently event-driven and, second, it is time-driven. Most
attempts at solving the self-stabilization problem have 40

focused only on the event-driven aspect of this problem.
Additionally, all efforts toward solving this problem must
recognize that the system undergoes two distinct phases, un-
stabilized and stabilized, and that once stabilized, the system
stateneeds to bepreserved. The protocol presented here prop- 45

erly merges the time and event driven aspects of this problem
in order to self-stabilize the system in a gradual and yet timely
manner. Furthermore, this protocol is based on the concept of
a continual vigilance of state of the system in order to main-
tain and guarantee its stabilized status, and a continual reaf- 50

firmation of nodes by declaring their internal status. Finally,
initialization and/or reintegration are not treated as special
cases. These scenarios are regarded as inherent part of this
self-stabilizing protocol.

The self-stabilization events are captured at a node via a 55

selection function that is based on received valid messages
from other nodes, When such an event occurs, it is said that a
node has accepted or that an accept event has occurred. When
the system is stabilized, it is said to be in the steady state.

In order to achieve self-stabilization, the nodes communi- 60

cate by exchanging two self-stabilization messages labeled
Resync and Affirm. The Resync message reflects the time-
driven aspect of this self-stabilization protocol, while the
Affirm message reflects the event-driven aspect of it. The
Resync message is transmitted when a node realizes that the 65

system is no longer stabilized or as a result of a resynchroni-
zation timeout. It indicates that the originator of the Resync

6
message has to reset and try to reengage in the self-stabiliza-
tion process with other nodes. The Affirm message is trans-
mitted periodically and at specific intervals primarily in
response to a legitimate self-stabilization accept event at the
node. The Affirm message either indicates that the node is in
the transition process to another state in its attempt toward
synchronization, or reaffirms that the node will remain syn-
chronized. The timing diagram of transmissions of a good
node during the steady state is depicted in FIG. 2. In the
figures, Resync messages are represented as `R' and Affirm
messages are represented as W. The line segments indicate
the time of the transmission of messages. As depicted in FIG.
2, the expected sequence of messages transmitted by a good
node is a Resync message followed by a number of Affirm
messages, i.e. RAAA ... AAARAA. The exact number of
consecutive Affirm messages will be accounted for later in
this application.

The time difference between the interdependent consecu-
tive events is expressed in terms of the minimum event-
response delay, D, and network imprecision, d. As a result, the
approach presented here is expressed as a self-stabilization of
the system as a function of the expected time separation
between the consecutive Affirm messages, which may be
termed ` AAA '. To guarantee that a message from a good node
is received by all other good nodes before a subsequent mes-
sage is transmitted, AAA is constrained such that AAA?(D+d).

Unless stated otherwise, all time dependent parameters of this
protocol are measured locally and expressed as functions of
AAA.

In FIG. 3, node N is shown to transmit two consecutive
Affirm messages. In the steady state, N receives one Affirm
message from every good node between any two consecutive
Affirm messages it transmits. Since the messages may arrive
at any time after the transmission of an Affirm message, the
accept event can occur at any time prior to the transmission of
the next Affirm message.

Three `fundamental parameters' characterize the self-sta-
bilization protocol presented here, namely K, D, and d (all
defined above). The number of faulty nodes, F, the number of
good nodes, G, and the remaining parameters that are subse-
quently enumerated are `derived parameters' and are based on
the three fundamental parameters. Furthermore, except for K,
F, G, TA, and TR which are integer numbers, all other param-
eters are real numbers. In particular, AAA is used as a threshold
value for monitoring of proper timing of incoming and out-
going Affirm messages. The derived parameters TA —G-1 and
TR=F+1 are used as thresholds in conjunction with the Affirm
and Resync messages, respectively.

The Monitor
The transmitted messages to be delivered to the destination

nodes are deposited on communication channels. Each node
comprises a state machine and a plurality of monitors, as
illustrated in FIG. 4. To closely observe the behavior of other
nodes, a node employs (K-1) monitors, one monitor for each
source of incoming messages as shown in FIG. 4. A node
neither uses nor monitors its own messages. The distributed
observation of other nodes localizes error detection of incom-
ing messages to their corresponding monitors, and allows for
modularization and distribution of the self-stabilization pro-
tocol process within a node. A monitor keeps track of the
activities of its corresponding source node. A monitor detects
proper sequence and timeliness of the received messages
from its corresponding source node. A monitor reads, evalu-
ates, time stamps, validates, and stores only the last message
it receives from that node. Additionally, a monitor ascertains
the health condition of its corresponding source node by
keeping track of the current state of that node. As K increases

US 7,792,015 B2
7
	

8
so does the number of monitors instantiated in each node. The 	 protocol's behavior. These parameters are defined in terms of
monitors may be implemented as separate physical compo- 	 AAA . Although a Resync message is transmitted immediately
nents from the nodes or may be logically implemented

	
after the node realizes that it is no longer stabilized, i.e.

implicitly as part of the node functions. 	 0<AAR-AAA, an Affirm message is transmitted once every
The State Machine	 5 AAA, i.e. ARA=AAA.
The assessment results of the monitored nodes are utilized

	
A node keeps track of time by incrementing a logical time

by the node in the self-stabilization process. Again, the node 	 clock, State—Timer, once every AAA . After the State—Timer
consists of a state machine and a set of (K-1) monitors. The 	 reaches P T or PM depending on the current state of the node,
state machine has two states, Restore state (`T') and Maintain	 the node (1) experiences a timeout, (2) transmits a new
state (`M'), that reflect the current state of the node in the io Resync message, (3) resets the State _Timer, (4) transitions to
system as shown in FIG. 5. The state machine describes the	 the Restore state, and (5) attempts to resynchronize with other
collective behavior of the node, N, utilizing assessment 	 nodes. If the node was in the Restore state it remains in that
results from its monitors, M, ... Mi_,, Mi, ... MK as shown	 state after the timeout. The current value of the State Timer
in FIG. 4, where M is the monitor for the corresponding node	 reflects the duration of the current state of the node. It also
N . In addition to the behavior of its corresponding source 15 provides insight in assessing the state of the system in the
node, a monitor's internal status is influenced by the current 	 self-stabilization process.
state of the node's state machine. In a master-slave fashion,	 In addition to the State _Timer, the node maintains the
when the state machine transitions to another state it directs

	
logical time clock Local —Timer. The Local—Timer is incre-

the monitors to update their internal status. 	 mented once every local clock tick and is reset when either (1)
The `transitory conditions' enable the node to migrate to 20 when the Local _Timer reaches a predefined maximum

the Maintain state and are defined as: (1) the node is in the 	 allowed value or (2) when the node has transitioned to the
Restore state; (2) at least 2F accept events in as many AAA

	 Maintain state and remained in that state for the duration of
intervals have occurred after the node entered the Restore

	
ResetLocalTimerAt local clock ticks, where ResetLocalTim-

state; and (3) no valid Resync messages are received for the 	 erAt is equal to AP eCLSLO and where APre^s on is the maximum
last accept event. The `transitory delay' is the length of time a 25 guaranteed self-stabilization precision. ResetLocalTimerAt
node stays in the Restore state. The minimum required dura- 	 can alternatively be any value in the range specified by equa-
tion for the transitory delay is 2F AAA after the node enters the 	 tion: AP, cisLO„ ResetLocalTimerAt-(PM—AP—,,son). The
Restore state. The maximum duration of the transitory delay

	
Local _Timer is intended to be used by higher level protocols

is dependent on the number of additional valid Resync mes-	 and is used in assessing the state of the system in the self-
sages received. Validity of received messages is defined 30 stabilization process.
below. When the system is stabilized, the maximum delay is

	
The monitor's status reflects its perception of its corre-

a result of receiving valid Resync messages from all faulty 	 sponding source node. In particular, a monitor keeps track of
nodes. Since there are at most F faulty nodes present, during 	 the incoming messages from its corresponding source and
the steady state operation the duration of the transitory delay	 ensures that only valid messages are stored. If the expected
is bounded by [2F AAA , 3F AAA].

	 35 time of arrival of a message is violated or if the message
A node in either of the Restore or Maintain state periodi-	 arrives out of the expected sequence, then the message is

cally transmits an Affirm message every AAA . When in the	 marked as invalid. Otherwise, the message is marked as valid
Restore state, a node either will meet the transitory conditions 	 and stored for the host node's consumption. It is important to
and transition to the Maintain state, or will remain in the 	 note that this protocol is expected to be used as the funda-
Restore state for the duration of the self-stabilization period 40 mental mechanism in bringing and maintaining a system
until it times out and transmits a Resync message. When in the	 within a known synchronization bound. This protocol neither
Maintain state, a node either will remain in the Maintain state 	 maintains a history of past behavior of the nodes nor attempts
for the duration of the self-stabilization period until it times 	 to classify the nodes into good and faulty ones. All such
out, or will unexpectedly transition to the Restore state

	
determination about the health status of the nodes in the

because TR other nodes have transitioned out of the Maintain 45 system is assumed to be done by higher level mechanisms.
state. At the transition, the node transmits a Resync message. 	 Message Sequence

The self-stabilization period is defined as the maximum
	

An `expected sequence' is defined as a stream of Affirm
time interval (during the steady state) that a good node 	 messages enclosed by two Resync messages, in which all
engages in the self-stabilization process. In this protocol, the 	 received messages arrive within their expected arrival times.
self-stabilization period depends on the current state of the 5o The time interval between the last (i.e., most recent) two
node. Specifically, the self-stabilization period for the

	
Resync messages is represented by ARR . The following are

Restore state is represented by P T and the self-stabilization	 three example sequences, in which '-'represents a missing
period for the Maintain state is represented by PM. PT and PM	 message:
are expressed in terms of AAA . The length of time a good node

	
RAAA ... AAAR expected sequence, all A messages

stays in the Restore state is denoted by L. During the steady 55	 present;

state, L, isalways less than PT. The time a good node stays in
	

RA-A ... A-R unexpected message sequence, missing A
the Maintain state is denoted by Lm. When the system is	 messages;
stabilized, LM is less than or equal to PM. The effective self- 	 R- ... -R unexpected message sequence, no A messages
stabilization period, P,, is the time interval between the	 present.

last two consecutive resets of the Local —Timer of a good node 60	 When a node is in the Restore state, the node's output
in a stabilized system, where PEff..1e LT+LM<PT+PM.	 sequence of messages has one of two patterns. If the node

In FIG. 6 the transitions of a node from the Restore state to
	

does not transition to the Maintain state, the node times out
the Maintain state (during the steady state) are depicted along 	 after PT and the node's expected sequence of output messages
a timeline of activities of the node. The line segments in FIG. 	 will be RAAA ... AAAR, consisting of P T consecutive A
6 indicate timing and order of the transmission of messages 65 messages. In this case, Ap=PT. On the other hand, when the
along the time axis. Two new parameters, ARA and AAR, are	 node synchronizes with other nodes, the node transitions to
introduced in this figure in order to clarify other aspects of this 	 the Maintain state before timing out, and the node's expected

US 7,792,015 B2
9

sequence of output messages will have at least 2F Affirm
messages, followed by thoseAffirm messages produced in the
Maintain state. The shortest amount of time it takes a node to
transition to the Maintain state is 2F AAA . The shortest amount
of time the node stays in the Maintain state is AAR . Therefore, 5

the time separation between any two consecutive Resync
messages from a good node is given by ARR ?2F AAA+AAR . As
a result, the shortest expected sequence consists of 2F A
messages enclosed by two R messages with a duration of
ARR,min 2F A,,+1 clock ticks.	 10

When a node is in the Maintain state, the node has two
possible output sequences of messages. If the node times out
after PM the node's expected sequence of output messages
will be RAAA ... AAAR consisting of an R message, fol-
lowed by A messages for when the node was in the Restore 15

state, followed by at least PM consecutive A messages for the
duration of the Maintain state, followed by another R mes-
sage. Therefore, (PZ.+PM)>ARR , in other words, A,,,__ (P7.+
PM). On the other hand, when the node abruptly transitions
out of the Maintain state, the node's output sequence of 20

messages will consist of fewer Affirm messages. The
sequence consists of an R message, followed by A messages
for when the node was in the Restore state, followed by A
messages for the duration of the Maintain state, followed by
another R message.	 25

As depicted in FIG. 6, starting from the last transmission of
the Resync message, consecutive Affirm messages are trans-
mitted at AAA intervals. At the receiving nodes, the following
definitions apply:

a message (Resync or Affirm) from a given source is valid 30

if it is the first message from that source;
an Affirm message from a given source is early if it arrives

earlier than (AAA_,) of its previous valid message (Re-
sync or Affirm);

a Resync message from a given source is early if it arrives 35

earlier than ARR,min of its previous valid Resync mes-
sage;

an Affirm message from a given source is valid if it is not
early; and

a Resync message from a given source is valid if it is not 40

early.
The protocol works when the received messages do not

violate their timing requirements. However, in addition to
inspecting the timing requirements, examining the expected
sequence of the received messages provides stronger error 45

detection at the nodes.
Protocol Functions
The functions used in this protocol are described in this

section. Two functions, InvalidAffirm() and InvalidResync(
), are used by the monitors. The InvalidAffirm() function 50

determines whether or not a received Affirm message is valid.
The InvalidResync() function determines if a received
Resync message is valid. When either of these functions
returns a true value, it is indicative of an unexpected behavior
by the corresponding source node. The Accept() function is 55

used by the state machine of the node in conjunction with the
threshold value TA —G-1. When at least TA valid messages
(Resync orAffirm) have been received, this function returns a
true value indicating that an accept event has occurred and
such event has also taken place in at least F other good nodes. 60

When a node accepts, the node consumes all valid messages
used in the accept process by the corresponding function.
Consumption of a message is the process by which a monitor
is informed that its stored message, if it existed and was valid,
has been utilized by the state machine. 	 65

The Retry() function is used by the state machine of the
node with the threshold value T, F+1. This function deter-

10
mines if at least TR other nodes have transitioned out of the
Maintain state. A node, via its monitors, keeps track of the
current state of other nodes. When at least TR valid Resync
messages from as many nodes have been received, this func-
tion returns a true value indicating that at least one good node
has transitioned to the Restore state. This function is used to
transition from the Maintain state to the Restore state. This
function triggers the node to transmit a Resync message.

The TransitoryConditionsMet() function is used by the
state machine of the node to determine proper timing of the
transition from the Restore state to the Maintain state. This
function keeps track of the accept events, by incrementing the
Accept_Event_Counter, to determine if at least 2F accept
events in as many AAA intervals have occurred. This function
returns a true value when the transitory conditions (defined
above) are met.

The TimeOutRestore() function uses PT as a boundary
value and asserts a timeout condition when the value of the
State—Timer has reached P T. Such timeout triggers the node to
reengage in another round of self-stabilization process. This
function is used when the node is in the Restore state.

The TimeOutMaintain() function uses PM as a boundary
value and asserts a timeout condition when the value of the
State _Timer has reached PM. Such timeout triggers the node
to reengage in another round of synchronization. This func-
tion is used when the node is in the Maintain state. This
timeout triggers the node to transmit a Resync message, and
thus may be generically termed a "Resync timeout."

In addition to the above functions, the state machine uti-
lizes the TimeOutAcceptEvent() function. This function is
used to regulate the transmission time of the next Affirm
message. This function maintains a DeltaAA_ Timer by incre-
menting it once per local clock tick and once it reaches the
transmission time of the next Affirm message, AAA , it returns
a true value. In the advent of such timeout, the node transmits
an Affirm message. Thus, this timeout may be generically
termed an `Affirm timeout," and AAA may be generically
termed the Affirm timeout interval.

System Assumptions
The following system assumptions apply to a system

capable of self-stabilizing using the protocol of the present
invention: (1) the source of the transient faults has dissipated;
(2) all good nodes actively participate in the self-stabilization
process and execute the protocol; (3) at most F of the nodes
are faulty; (4) the source of a message is distinctly identifiable
by the receivers from other sources of messages; (5) a mes-
sage sent by a good node will be received and processed by all
other good nodes within AAA , where AAA ?(D+d); and (6) the
initial values of the state and all variables of a node can be set
to any arbitrary value within their corresponding range. In an
implementation, it is expected that some local capabilities
exist to enforce type consistency of all variables.

The Self-Stabilizing Clock Synchronization Problem
To simplify the presentation of this protocol, it is assumed

that all time references are with respect to a real time t o, where
to-0 when the system assumptions are satisfied, and for all
tAo the system operates within the system assumptions. Let

C be the bound on the maximum convergence time;
ALoca, n_(t), for real time t, be the maximum difference

of values of the local timers of any two good nodes N,
and N., where N, N eKG, and KG' S the set of all good
nodes; and

AP,,eCLSLO11 , also referred to as self-stabilization precision, be
the guaranteed upper bound on the maximum separation
between the local timers of any two good nodes N and
N in the presence of a maximum of F faulty nodes,
where N,, N EKG.

US 7,792,015 B2
11

A good node N resets its variable Local _Timer, periodi-
cally but at different points in time than other good nodes. The
difference of local timers of all good nodes at time t, A,_,
,_(t), is determined by the following equation while recog-
nizing the variations in the values of the Local-Timer, across
all good nodes:

A,,,,r ,,__(t)=min((Local_Timer__(t)—Local_Tim-
erm,,,(t)),

(Local Timerm.(t—[Ap..ino„])—Local_Timerm ,,,(t-
f AEre.=,onl))),

where

Local_ Timerm ,,,(x)=min({Local_Timer,(x) INieKc,}),
Local_ Timerm_(x)=max({Local_Timer,(x)
NiEKG}),

and there exist C and [Ap_ciSLO„]-.

Convergence: Aio 1_T, e (C)_HAP,, isio„l.
Closure: Vt, t?C, Aio,,, T_Jt)^-[AP,, isio„]•

The values of C, [AP,, isio„l, and the maximum value for
Local-Timer,, Local-Timer-Max, are determined to be:

C=(2Pz+PM)AAA;

[Ap_i,i » —(3F-1)AAA—D+A^,; and

Local Timer Max=P1+Pm,

and the amount of drift from the initial precision is given by:

An f -((1+P)-1/(1+P))PE8,n, ,AAA-

Note that since Local_Timer_Max>P E/2 and since the Local_
Timer is reset after reaching Local-Timer-Max (worst case
wraparound), a trivial solution is not possible.

Byzantine-Fault Tolerant Self-Stabilizing Protocol for
Distributed Clock Synchronization Systems

The self-stabilization protocol of the present invention is
illustrated in FIG. 7. The steps of FIG. 7 are executed by each
node's state machine and set of monitors once every local
oscillator tick. Specifically, the steps of FIG. 7A are executed
by each monitor of each node, and the steps of FIGS. 7B and
7C are executed by the state machine of each node.

In FIG. 7A, a monitor receives a message from its corre-
sponding source node, and determines the message type (i.e.,
Resync or Affirm). If the message is a Resync message, the
monitor determines the validity of the message, as described
above. If the Resync message is determined to be invalid, the
monitor invalidates the Resync message and awaits the next
message. If the Resync message is valid, the monitor vali-
dates the Resync message, stores the Resync message, and
sets the state of the source node to Restore. The monitor then
awaits the next message. If the message is anAffirm message,
the monitor determines the validity of the message, as
described above. If the Affirm message is determined to be
invalid, the monitor invalidates the Affirm message and
awaits the next message. If the Affirm message is valid, the
monitor validates Affirm message, stores the Affirm message,
and then awaits the next message.

The actions of the state machine are based on the state (i.e.,
Restore or Maintain) of the node in which the state machine is
instantiated. If the node is in a Restore state, the steps of FIG.
7B are executed. If the node is in a Maintain state, the steps of
FIG. 7C are executed. Referring now to FIG. 713, if the node
is in a Restore state, the state machine determines if the value
of the State _Timer is ?P T (i.e., whether the TimeOut
RestoreO function is True). If yes, the state machine transmits

12
a Resync message, resets the State _Timer, Resets the
DeltaAA_Timer, and resets the Accept-Event-Counter. The
node remains in the Restore state.

If the value of the State-Timer is not ?PT, the state
s machine determines if the value of the DeltaAA_Timer is

?AAA (i.e., whether the TimeOutAcceptEvent() function is
True). If the value of the DeltaAA_Timer is not ?AAA, the
node remains in the Restore state. If the value of the
DeltaAA_ Timer is ?AAA , the state machine transmits an

io Affirm message and resets the DeltaAA_Timer. The state
machine then determines if ?TA valid messages (either
Resync orAffirm) have been received. If no, the node remains
in the Restore state. If ?TA valid messages have been
received, the state machine consumes the valid messages,

15 clears the source node state status, and increments the
Accept_ Event-Counter. The state machine then determines
whether the transitory conditions (described above) have
been met. If no, the node remains in the Restore mode. If the
transitory conditions have been met, the node resets the

20 State-Timer and transitions to the Maintain state.
Referring now to FIG. 7C, if the node is in a Maintain state,

the state machine determines if the value of the State-Timer
is ?PM (i.e., whether the TimeOutMaintain() function is
True). If no, the state machine determines if ?TR nodes have

25 transitioned out of a Maintain state. If ?TR nodes have tran-
sitioned out of a Maintain state, or if the value of the
State-Timer is ?PM, the state machine transmits a Resync
message, resets the State-Timer, Resets the DeltaAA_Timer,
and resets the Accept-Event-Counter. The node then transi-

30 tions to a Restore state.
If not more than ?TR nodes have transitioned out of a

Maintain state, the state machine determines if the value of
the DeltaAA_Timer is ?AAA (i.e., whether the TimeOutAc-
ceptEvent() function is True). If the value of the DeltaAA_

35 Timer is not ?A,,, the noderemains in a Maintain state. If the
value of the DeltaAA_Timer is ?AAA , the state machine
determines if ?TA valid messages (either Resync or Affirm)
have been received. If ?TA valid messages have been
received, the state machine consumes the valid messages. If

4o not ?TA valid messages have been received (or if ?TA valid
messages have been received, and after the valid messages
have been consumed), the state machine determines if the
value of the State _Timer is equal to AP,, i,io11 . If the value of
the State-Timer is equal to AP,, i,ion, the state machine resets

45 the Local _Timer. Regardless of the value of AP,, i,ion, the
state machine transmits an Affirm message and resets the
DeltaAA_Timer. The node remains in a Maintain state.

In a variation of this protocol and in conjunction with a
higher level mechanism, a good node stops transmitting

so Affirm messages after it is determined by the higher level
mechanism that the system has stabilized. Such variation
preserves the self-stabilization properties. However, such
optimization in the number of exchanged self-stabilization
messages is at a cost of delaying error detection, introducing

ss jitters in the system, and prolonging the self-stabilization
process.

Overhead of the Protocol
Since only two self-stabilization messages, namely Resync

and Affirm, are required for the proper operation of this pro-
60 tocol, a single bit suffices to represent both messages. There-

fore, for a data message w bits wide, the self-stabilization
overhead will be I/w per transmission. The continual aspect
of the protocol requires reaffirmation of self-stabilization sta-
tus of good nodes by periodic transmission of Affirm mes-

65 sages at AAA intervals. As a result, the maximum number of
self-stabilization messages transmitted within any time inter-
val is deterministic and is a function of that time interval. In

US 7,792,015 B2
13

particular, a good node transmits at most PESe eIAAA self-
stabilization messages during a period of PE —tL1e, where,

PEfe.tt „e=time difference between any two consecutive resets
of the Local—Timer PESeC, 1e-PM+6F Therefore, the number
of messages sent by a node—PE ,,,,,/A,, and the total num-
ber of messages sent by K nodes=K PE ,,I,,/AAA.

Achieving Tighter Precision
Since the self-stabilization messages are communicated at

AAA intervals, if AAA , and hence AP eCLSLO , are larger than the
desired precision, the system is said to be "Coarsely Synchro-
nized." Otherwise, the system is said to be "Finely Synchro-
nized." If the granularity provided by the self-stabilization
precision is coarser than desired, a higher synchronization
precision can be achieved in a two step process. First, a
system from any initial state has to be Coarsely Synchronized
and guaranteed that the system remains Coarsely Synchro-
nized and operates within a known precision, AP eCLSLO . The
second step, in conjunction with the Coarse Synchronization
protocol, is to utilize a proven protocol that is based on the
initial synchrony assumptions to achieve optimum precision
of the synchronized system as illustrated in FIG. 8. As
depicted in FIG. 8, the Coarse Synchronization protocol ini-
tiates the start of the Fine Synchronization protocol if a tighter
precision of the system is desired. The Coarse protocol main-
tains self-stabilization of the system while the Fine Synchro-
nization protocol increases the precision of the system.

Simulations and Model Checking
The topology considered is a system of four nodes, as

shown in FIG. 9, suchthat all nodes can directly communicate
with all other nodes, where K=4, G=3 and F=1. With D=1 and
d-0, and AAA=D+d=1, the number of states needed to repre-
sent all possible combinations of initial states for the entire
four-node system is approximately 7x10 30 states. The Sym-
bolic Model Verifier (SMV) was able to handle all possible
scenarios and the protocol was exhaustively model checked
for this system.

Applications
The self-stabilizing protocol of the present invention is

expected to have many applications as well as many theoreti-
cal implications. Embedded systems, distributed process con-
trol, synchronization, inherent fault tolerance which also
includes Byzantine agreement, computer networks, the Inter-
net, Internet applications, security, safety, automotive, air-
craft, wired and wireless telecommunications, graph theo-
retic problems, leader election, and time division multiple
access (TDMA) are a few examples. These are some of the
many areas of distributed systems that can use self-stabiliza-
tion in order to design more robust distributed systems.

CONCLUSIONS

The protocol of the present invention is scalable with
respect to the fundamental parameters, K, D, and d. The
self-stabilization precision AP eCLSLO , AEoca, Ti_(t), and
self-stabilization periods PT and PM are functions of K, D and
d. The convergence time is a linear function of P T and PM and
deterministic. As K increases so does the number of monitors
instantiated in each node. Also, as K increases so does the
number of communication channels in a system of fully con-
nected communication network. Therefore, although there is
no theoretical upper bound on the maximum values for the
fundamental parameters, implementation of this protocol
may introduce some practical limitations on the maximum
value of these parameters and the choice of topology.

Symbols
p bounded drift rate with respect to real time
d network imprecision

14
D event-response delay
F sum of all faulty nodes
G sum of all good nodes
K sum of all nodes

s	 K, set of all good nodes
Resync self-stabilization message
Affirm self-stabilization message
R abbreviation for Resync message
A abbreviation for Affirm message

10	 TA threshold for Accept() function
TR threshold for Retry() function
Restore self-stabilization state
Maintain self-stabilization state
T abbreviation for Restore state

15	 M abbreviation for Maintain state
P,_,, minimum period while in the Restore state
PT periodwhile in the Restore state
Pm periodwhile in the Maintain state
AAA time difference between the last consecutive Affirm

20	 messages
ARR time difference between the last consecutive Resync

messages
C maximum convergence time
ALocal_Timer(t) maximum time difference of Local —Tim-

25	 ers of any two good nodes at real time t
AP,,e,io, maximum self-stabilization precision
ADrift maximum deviation from the initial synchrony
Ni the ith node
Mi the ith monitor of a node

30 Many modifications and other embodiments of the inven-
tion will come to mind to one skilled in the art to which this
invention pertains having the benefit of the teachings pre-
sented in the foregoing descriptions and the associated draw-
ings. Therefore, it is to be understood that the invention is not

35 to be limited to the specific embodiments disclosed and that
modifications and other embodiments are intended to be
included within the scope of the appended claims. Although
specific terms are employed herein, they are used in a generic
and descriptive sense only and not for purposes of limitation.

40
What is claimed as new and desired to be secured by

Letters Patent of the United States is:
1. A system capable of self-stabilizing from an arbitrary

state in the presence of abounded number of Byzantine faults,

45 the system comprising:
a plurality of nodes in communication with each other

node, each node comprising:
• state machine:
• plurality of monitors, a quantity of monitors being

50 equal to one less than a quantity of nodes, each moni-
tor in communication with the state machine, each
monitor configured to receive self-stabilization mes-
sages from a different corresponding node and con-
figured to determine a current state of the correspond-

55	 ing node;
• local physical oscillator; and
two logical time clocks driven by the local physical

oscillator;
wherein the state machine is configured to describe a

60	 current state of the node, the current state comprising
either a maintain-state or a restore-state;

wherein the state machine is configured to transmit self-
stabilization messages to all other nodes, the self-
stabilization messages comprising either a Resync

65 message indicating that the node is attempting to
engage in resynchronization with all other nodes or an
Affirm message indicating that the node is transition-

US 7,792,015 B2
15

ing to another state in an attempt to synchronize or
indicating that the node is currently synchronized;

wherein the state machine transitions the node from the
maintain-state to the restore-state if a predefined num-
ber of valid Resync messages have been received; 	 5

wherein the state machine transitions the node from the
restore-state to the maintain-state if (1) the node is in
the restore-state, (2) a predefined number of events
have occurred within a same number of predefined
time intervals, each event occurring when a pre- 10

defined number of valid self-stabilization messages
have been received by the monitors within one pre-
defined time interval, and (3) the monitors have not
received a valid Resync message during a most recent
event occurrence;	 15

wherein the system does not comprise a central dock
used by the nodes for self-stabilization; and

wherein the nodes do not use an externally generated
global pulse for self-stabilization.

2. The system of claim 1, wherein each state machine is 20

configured to transmit the Resync message when the state
machine transitions the node from the maintain-state to the
restore-state or when a Resync timeout occurs.

3. The system of claim 1, wherein each state machine is
configured to transmit the Affirm message when the pre- 25
defined number of valid self-stabilization messages have
been received by as many of the corresponding monitors
within an Affirm timeout interval or when the Affirm timeout
interval has lapsed.

4. The system of claim 3, wherein the Affirm timeout 30
interval equals a time difference between two most recent
consecutive Affirm messages received from a good node dur-
ing steady state.

5. The system of claim 4, where the predefined number of
valid self-stabilization messages equals one minus a sum of 35
all good nodes.

6.The system of claim 1, wherein the predefined number of
valid Resync messages equals one plus a sum of all faulty
nodes.

7. The system of claim 1, wherein the predefined number of 40
events equals two times a sum of all faulty nodes.

8. The system of claim 1, wherein the predefined number of
valid self-stabilization messages equals one minus a sum of
all good nodes.	 45

9. The system of claim 1, wherein the predefined time
intervals equal a time difference between two most recent
consecutive Affirm messages received from a good node dur-
ing steady state.

10. The system of claim 1, wherein the monitors are further 50
configured to determine if the received self-stabilization mes-
sages are valid and to store most recently received valid
messages.

11. The system of claim 1, wherein the two logical time
clocks comprise a State Timer and a Local timer, wherein the 55
State Timer is incremented once every time difference
between two most recent consecutive Affirm messages
received from a good node during steady state, wherein the
State Timer is reset either (1) when the state machine transi-
tions the node from the maintain-state to the restore-state or 60
(2) when the state machine transitions the node from the
restore-state to the maintain-state, wherein the Local Timer is
incremented once every tick of the local physical oscillator,
wherein the Local Timer is reset either (1) when the Local
Timer reaches a predefined maximum allowed value or (2) 65
when the node has transitioned to the Maintain state and
remained in the Maintain state for ^4P eCLSLO ticks of the

16
local physical oscillator, and wherein 4P eCZSZO is a maximum
guaranteed self-stabilization precision of the system.

12.A method of self-stabilizing a system from an arbitrary
state in the presence of a bounded number of Byzantine faults,
the system comprising a plurality of nodes, each node com-
prising a state machine and a plurality of monitors, the
method comprising the steps of:

providing the plurality of nodes in communication with
each other node, each node comprising:
a state machine;
the plurality of monitors, the quantity of monitors being

equal to one less than the quantity of nodes, each
monitor in communication with the state machine;

a local physical oscillator; and
two logical time clocks driven by the local physical

oscillator;

wherein the state machine is configured to describe a
current state of the node, the current state comprising
either a maintain-state or a restore-state;

receiving, in each monitor, self-stabilization messages
from a different corresponding node;

determining, by each monitor, a current state of the
corresponding node;

transmitting, by each state machine, self-stabilization
messages to all other nodes, the self-stabilization
messages comprising either a Resync message indi-
cating that the node is attempting to engage in self-
stabilization with all other nodes or an Affirm mes-
sage indicating that the node is transitioning to
another state in an attempt to synchronize or indicat-
ing that the node is currently synchronized;

transitioning, by each state machine, the node from the
maintain-state to therestore-state if a predefined num-
ber of valid Resync messages have been received;

transitioning, by the state machine, the node from the
restore-state to the maintain-state if (1) the node is in
the restore-state, (2) a predefined number of events
have occurred within a same number of predefined
time intervals, each event occurring when a pre-
defined number of valid self-stabilization messages
have been received by the monitors within one pre-
defined time interval, and (3) the monitors have not
received a valid Resync message during a most recent
event occurrence;

wherein the method does not comprise use of a central
clock by the nodes for self-stabilization; and wherein
the method does not comprise use of an externally
generated global pulse by the nodes for self-stabiliza-
tion.

13. The method of claim 12, further comprising:
transmitting, by each state machine, the Resync message

when the state machine transitions the node from the
maintain-state to the restore-state or when a Resync
timeout occurs.

14. The method of claim 12, wherein each state machine is
configured to transmit the Affirm message when a the pre-
defined number of valid self-stabilization messages have
been received by as many of the corresponding monitors
within the Affirm timeout interval or when an Affirm timeout
interval has lapsed.

15. The method of claim 14, wherein the Affirm timeout
interval equals a time difference between two most recent
consecutive Affirm messages received from a good node dur-
ing steady state.

16. The method of claim 14, where the predefined number
of valid self-stabilization messages equals one minus a sum of
all good nodes.

US 7,792,015 B2
17

17. The method of claim 12, wherein the predefined num-
ber of valid Resync messages equals one plus a sum of all
faulty nodes.

18. The method of claim 12, wherein the predefined num-
ber of events equals two times a sum of all faulty nodes.

19. The method of claim 12, the predefined number of valid
self-stabilization messages equals one minus a sum of all
good nodes.

20. The method of claim 12, wherein the predefined time
intervals equal a time difference between two most recent
consecutive Affirm messages received from a good node dur-
ing steady state.

21. The method of claim 12, further comprising:
determining, by the monitors, if the received self-stabili-

zation messages are valid; and
storing, by the monitors, most recently received valid mes-

sages.
22. The method of claim 12, wherein the two logical time

clocks comprise a State Timer and a Local timer, and wherein
the method further comprises:

18
incrementing the State Timer once every time difference

between two most recent consecutive Affirm messages
received from a good node during steady state;

5
resetting the State Timer either (1) when the state machine

transitions the node from the maintain-state to the
restore-state or (2) when the state machine transitions
the node from the restore-state to the maintain-state;

incrementing the Local Timer once every tick of the local
10	 physical oscillator; and

resetting the Local Timer either (1) when the Local Timer
reaches a predefined maximum allowed value or (2)
when the node has transitioned to the Maintain state and

15	
remained in the Maintain state for [AP,, isio„] ticks of the
local physical oscillator, wherein APrecision is a maxi-
mum guaranteed self-stabilization precision of the sys-
tem.

	7792015-p0001.pdf
	7792015-p0002.pdf
	7792015-p0003.pdf
	7792015-p0004.pdf
	7792015-p0005.pdf
	7792015-p0006.pdf
	7792015-p0007.pdf
	7792015-p0008.pdf
	7792015-p0009.pdf
	7792015-p0010.pdf
	7792015-p0011.pdf
	7792015-p0012.pdf
	7792015-p0013.pdf
	7792015-p0014.pdf
	7792015-p0015.pdf
	7792015-p0016.pdf
	7792015-p0017.pdf

